Geneva Sugar and Biofuels Conference

April 17-20 2023

Fairmont Grand Hotel Geneva, Switzerland

Tim Thys,
Global Laboratory Manager,
Control Union

S&P Global
Commodity Insights

CONTROL UNION

Control Union is a family-owned entity, expert in testing, inspection and certification

5000+ people

The Group is a family owned and non-listed company. Long term vision - thinking in generations.

900m(\$ turnover

Global activities

Certifications

Collateral Services

Projects & Solutions

Commodity Inspections

Laboratory services

Commodity Logistics

Energy Logistics

Industrial Inspections

Pest Management

Academy

Commodities

Grains, Oil seeds & By-product

Molasses & Vegetable oil

Biomass

Fertilizers

Coal, Minerals & Metal

Bio Tim

- Tim Thys (Antwerp, °1972) graduated as a biochemist and holds a **Master's in environmental sciences**;
- Global Laboratory Manager with Control Union;
- Referee with ICUMSA for the subject Raw Sugar and associate referee for White Sugar and Sampling
 https://www.icumsa.org/subject/gs1-raw-sugar/
- **advised** sugar trading clients and law firms on **quality issues** for both white and raw sugar;
- **Recurring speaker** at the "Newcomers" **seminars** of the Refined Sugar Association in London.

Caking of white sugar and how to prevent (and predict?) it: a technical perspective

- cargo of white sugar all key quality parameters within specs

- yet finding <u>lumps or caking</u> of the same sugar upon discharge <u>at destination</u>

- What is it and what causes it?
- **How** to prevent it;
- Can one **predict** caking?

Caking of white sugar: what & why?

Caking (also called 'setting' or 'hardening') is the phenomenon in which refined sugar:

- ceases to be free-flowing due to the **formation of lumps of agglomerated sugar crystals**;

- extent to which a sugar is caked may vary:

from **soft, friable lumps** up to **surface crusting** and even **rock-hard** setting of large amounts of a sugar pile or bagged sugar cargo (Chen and Chou (1993).

Caking of white sugar: what & why?

The main driver for caking is **moisture**:

1. either originating from the surrounding air, also called deliquescent caking

2. or from the <u>uncontrolled release</u> of so-called <u>bound moisture</u> that still is present inside the crystals of <u>insufficiently conditioned or non-conditioned sugar</u>, also called <u>efflorescent caking</u> (Chen and Chou, 1993).

White sugar = must be very low in moisture (0,015 – 0,030%):

Yet, moisture content when leaving centrifuges and after drying and cooling: $\frac{\text{up to 0,1\%}}{\text{too high}}$.

Location	Total moisture (%)
centrifuges	0,9
dryer	0,1
cooler	0,1

Picture: sugar dryer

Therefore: sugar needs further "conditioning", also called "maturing" or "ripening.

- Instable layer → will crystalize;
- **Bound** be **converted** to "free" moisture → leaves crystals
- In "conditioning" silo = "controlled" environment.

Four stages in caking (Mathlouthi and Rogé, 2004)

Typical conditioning curve in three runs (Rein, P. 2007)

Caking of white sugar: 2. temperature

Conditioning plant guidelines (Rein, 2007)	
Conditioning temperature:	40-50 °C
Minimum conditioning time:	24 hrs
Recommanded conditioning time:	48 hrs
Relative humidity air:	10-20 %
Feed sugar moisture (from dryers):	0,10% max
Fine crystals (less than 300μm):	10% max
Post-conditioning target in °C:	35°C max

Inspection: max temperature limit for loading ops

Caking stages (A, B, C and D) for sugar samples with varying crystal sizes 800, 630, 500, 400, 250 and below 250 µm (a, b, c, d, e and f) exposed to varying ERH and temperatures (Mathlouthi and Rogé, 2004)

Caking of white sugar: 3. crystal size

Caking of white sugar: how to prevent it?

1. Avoid packing / bagging of unconditioned sugar.....but how do you know????

2. Avoid bagging / loading sugar that is warmer than 35°C (unconditioned);

3. Sugar that is low in fines ($<250 \mu m$), with a higher Mean Aperture (MA) and low Coefficient of Variation (CV).

Crystal size distribution of two samples of sugar

Sample 2

Sample 1

size (mm)	% crystals
1,250	3,4
1,000	18,0
0,800	37,8
0,600	25,2
0,400	9,2
0,200	4,4
0,000	2,0

Mean Aperture MA: 0,820 mm
Coefficient of Variation CV: 30,0 %

size (mm)	% crystals	
1,250	0,9	
1,000	7,8	
0,800	14,6	
0,600	21,0	
0,400	30,2	
0,200	15,0	
0,000	10,5	
Mean Aperture MA: Coefficient of Variation	0,580 mm 49,3 %	

Caking of white sugar: how to predict it?

- 1. Most commonly used moisture determination (ICUMSA GS2 $_{1/3/9}$ -15 (2007) oven method "loss on drying" (LOD): only measures free moisture;
- 2. In unconditioned sugar, the high amount of **bound moisture not detected** when using "loss on drying" method;

Location	Total moisture (%)	Moisture "loss on drying" method" (%)
centrifuges	0,9	0,9
dryer	0,1	0,015 - 0,025
cooler	0,1	0,015 - 0,025

Location and total moisture versus LOD method (Burroughs and de Bruijn, 2008)

Caking of white sugar: how to predict it?

3. "total moisture determination" (Karl Fisher titration method) can capture both free and bound moisture:

bound moisture = total moisture (KF) – free moisture

- 4. Total moisture content of properly conditionned sugar should not exceed 0,05-0,06% (van der poel et al, 1998).
- 5. ICUMSA GS4/7/3-12 to be upgraded to official method on white sugar.

Caking of white sugar: to conclude.....

1. **Caking** of white sugar is caused by **three factors**: **moisture**, **temperature** and **crystal size**

- 2. Unconditioned sugar can reveal perfectly normal "within specs" analysis results;
- 3. The loss on drying (oven) method only detects free moisture, not bound (which is high in unconditioned sugar)
- 4. "total moisture determination" capture both free and bound moisture, thereby predicting caking risks to a certain extent (& ceteris paribus).
- 5. <u>Total moisture content</u> of properly conditionned sugar should not exceed 0,05 0,06%

Thank you for your time

Tim Thys - tthys@controlunion.com

Literature references:

Burroughs, P. and de Bruijn, J.M. (2008). Sugar Technology Training - China. British Sugar.

Chen, J. C.P. and Chou, C. (1993). *Cane Sugar Handbook – a manual for cane sugar manufacturers and their chemists – 12th Edition.* p. 499-523. New York: John Wiley & Sons.

ICUMSA (2007). ICUMSA GS2 $_{1/3/9}$ -15 (2007): The determination of sugar moisture by loss on drying.

Mathlouthi, M. and Rogé, B. (1999). Caking of white crystalline sugar. *Université de Reims Champagne-Ardenne, Laboratoire de Chimie Physique Industrielle*. Reims

Mathlouthi, M. and Rogé, B. (2002). Water vapour sorption and the caking of food powders. Presentation at Eurofood Water 2002. *Université de Reims Champagne-Ardenne, Laboratoire de Chimie Physique Industrielle*. Reims

Mathlouthi, M. and Rogé, B. (2004). Caking of white sugar and how to prevent it. *Proceedings of the South African Sugar Technologists Association 78*: p. 495-504.

Rein, P. (2007). Cane Sugar Engineering. Berlin: Verlag dr. A. Bartens

van der Poel, P.W., Schiweck, H. and Schwartz, T. (1998). Sugar Technology – Beet and Cane Sugar Manufacture. Berlin: Verlag dr. A. Bartens